O(n^2) Complexity
O(n^2) Complexity
O(n^2) denotes quadratic time complexity. The execution time of the algorithm grows quadratically with the size of the input data.
Example
Consider a function that finds pairs in an array:
function findPairs(arr) {
for (let i = 0; i < arr.length; i++) {
for (let j = i + 1; j < arr.length; j++) {
console.log(`Pair: ${arr[i]}, ${arr[j]}`);
}
}
}
const numbers = [1, 2, 3, 4, 5];
findPairs(numbers);
Drop Non-Dominant Terms
function findPairs(arr) {
// O(n^2)
for (let i = 0; i < arr.length; i++) {
for (let j = i + 1; j < arr.length; j++) {
console.log(`Pair: ${arr[i]}, ${arr[j]}`);
}
}
// O(n)
for (let q = 0; q < 5; q++) {
console.log("-------------", q);
}
// If we combine all the "O" operations it becomes O(n^2 + n)
// O(n^2) is a Dominant term
// "n" is a Non-Dominant term
// So we remove the "non-dominant" term and we're only left with O(n^2)
// This way, we simplify our bigO
}
const numbers = [1, 2, 3, 4, 5];
findPairs(numbers);